Given $\left| {{\vec A_1}} \right| = 2,\,\left| {{\vec A_2}} \right| = 3$ and $\left| {{{\vec A}_1} + {{\vec A}_2}} \right| = 3$.  Find the value or $\left| {\left( {{{\vec A}_1} + 2{{\vec A}_2}} \right) \times \left( {3{{\vec A}_1} - 4{{\vec A}_2}} \right)} \right|$

  • A

    $64$

  • B

    $60$

  • C

    $62$

  • D

    $61$

Similar Questions

If $| A |=2,| B |=5$ and $| A \times B |=8$ Angle between $A$ and $B$ is acute, then $A \cdot B$ is

If $\vec{A}$ and $\vec{B}$ are two vectors satisfying the relation $\vec{A} . \vec{B}=[\vec{A} \times \vec{B}]$. Then the value of $[\vec{A}-\vec{B}]$. will be :

  • [JEE MAIN 2021]

If $a + b + c =0$ then $a \times b$ is

What is the product of two vectors if they are parallel or antiparallel ? 

Two vectors $\overrightarrow A $ and $\overrightarrow B $ are at right angles to each other, when

  • [AIIMS 1987]